煤的水分直接影响煤的使用、运输和储存。煤的水分增加,煤中有用成分相对减少,且水分在燃烧时变成蒸汽要吸热,因而降低了煤的发热量。煤的水分增加,还增加了无效运输,并给卸车带来了困难。特点是冬季寒冷地区,经常发生冻车,影响卸车,影响生产,影响车皮周转,加剧了运输的紧张。
煤的水分也容易引起煤炭粘仓而减小煤仓容量,甚至发生堵仓事故。随着矿井开采深度的增加,采掘机械化的发展和井下安全生产的加强,以及喷露洒水、煤层注水、综合防尘等措施的实施,原煤水分呈增加的趋势。为此,煤矿除在开采设计上和开采过程中的采煤、掘进、通风和运输等各个环节上制定减少煤的水分的措施外,还应在煤的地面加工中采取措施减少煤的水分。
液态除渣旋风炉温度高达1760~1800℃,大大强化燃烧过程;固态排渣炉炉温受煤灰熔融性的制约,通常不超过1200~1350℃。
燃料和空气充分混合与良好接触, 为保证燃料和空气充分混合与良好接触主要措施有减少煤的粒度以增加煤的反应表面积、加压燃烧、调整气流运动等。
煤炭燃烧方式可分层状燃烧、悬浮燃烧、旋风燃烧和流化床燃烧4种,燃烧设备分别为层燃炉、煤粉炉、旋风炉和流化床燃烧炉。
储量计算的深度对拟建大型(年产煤能力120万t以上)和中型(年产煤能力45万t至90万t)矿井的井田,一般不超过垂深1000m;只适于建小型井(年产煤能力30万t及以下)的地区,一般不超过垂深600m;老矿区的深部,一般不超过垂直深1200m.
级储量通过较密集的勘探工程控制,对煤层、煤质、煤类、构造及岩浆岩等地质条件作了详细研究所计算的储量。
B级储量通过系统的勘探工程控制,对煤层、煤质、煤类、构造和岩浆岩等地质条件作了较详细研究所计算的储量,或者由级储量块段根据规定外推的储量。
C级储量通过一定的勘探工程控制,对煤层、煤质、煤类和构造等地质条件作了一定研究所计算的储量,或者由B级储量块段根据规定外推的储量。
D级储量通过地质填图配合稀疏勘探工程控制,对煤层、煤质、煤类和构造等地质条件作了初步了解所计算的储量。
煤矸石包括岩巷掘进排出的岩石,煤中的手选矸石,洗煤厂排出的洗矸等,排放量很大,超过煤炭总产量的10%,现矸石山1 500多座,堆放量在16亿t以上。这些矸石不仅压占大量土地,而且大气降水淋溶时还能污染周围水体、农田和地下水。矸石山自燃后产生硫化物等有害气体,目前有自燃现象的矸石山约140多座,成为活的大气污染源。目前,有一小部分煤矸石用于回填复垦,但大部分尚待处理。平顶山矿区对矸石山进行植树绿化,取得了一定的成效。
埋了 钻