在回到清洁半导体之前,我想介绍另一个有趣的微纳米气泡现象。 它是自由基的产生。
大约20年前,当我开始这项研究时,我使用一种现象作为参考模型。 它是通过超声波产生的活性物种。 水中的超声波辐射伴随着强烈的声压波动,从而导致空化效应。 产生微纳米气泡并迅速崩溃(压碎)。 如上所述,当微纳米气泡变小时,内部压力与粒径成反比地上升。 当超声波产生的微纳米气泡时,内部压力的升高非常快,因此认为其效果接近绝热压缩。 结果,在的瞬间形成了非常高的温度场,并且温度迅速升高。 这就是所谓的极限反应场的形成,结果,一部分水分子被热分解以产生诸如羟基的活性物种。
臭氧微纳米气泡的作用也是一个永无止境的话题,但是在食品工业领域中对臭氧微纳米气泡有很高的期望。然而,即使通过常规的曝气方法产生臭氧水,由于消耗和分解,大部分臭氧将在一小时内消失。因此,严格限制了臭氧水的使用,并且通过稳定臭氧作为微纳米气泡,可以将臭氧水的作用维持几个月。通过将其储存在遮蔽紫外线的阴暗处,制造时的臭氧浓度为1.5 mg / L,但是即使在2个月后也可以保持在1.0 mg / L左右。
尽管臭氧微纳米气泡技术是先进的技术,并且在现阶段无法对其进行详细说明,但获得了许多特殊的结果。例如,冷冻鱼作为鱼肉加工原料的百分比很大,但是解冻需要很长时间,由于解冻会导致质量下降,并且被屠宰时细菌会变质。然而,通过在解冻时使用臭氧微纳米气泡水,不仅可以将除霜所需的时间减少到不到传统方法的一半,而且还包含在鱼糜中。已经证实,包括热稳定细菌如孢子形成细菌在内的细菌数量大大减少,并且在白度和弹性方面可以再现与生鱼鱼糜相当的状态。这些特性被认为归因于微纳米气泡的优异的渗透性和臭氧的杀菌作用,以及臭氧微纳米气泡在确保食品安全方面的巨大潜力。这是暗示性的结果。
埋了 钻